Exercise 60

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=x e^{x / 2}, \quad[-3,1]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x e^{x / 2}\right) \\
& =\left[\frac{d}{d x}(x)\right] e^{x / 2}+x\left[\frac{d}{d x}\left(e^{x / 2}\right)\right] \\
& =(1) e^{x / 2}+x\left[\left(e^{x / 2}\right) \cdot \frac{d}{d x}\left(\frac{x}{2}\right)\right] \\
& =e^{x / 2}+x\left[\left(e^{x / 2}\right) \cdot\left(\frac{1}{2}\right)\right] \\
& =\frac{1}{2}(2+x) e^{x / 2}
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
\frac{1}{2}(2+x) e^{x / 2}=0 \\
2+x=0 \\
x=-2
\end{gathered}
$$

$x=-2$ is within $[-3,1]$, so evaluate f here.

$$
f(-2)=(-2) e^{(-2) / 2}=-\frac{2}{e} \approx-0.735759 \quad \quad \text { (absolute minimum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{align*}
f(-3) & =(-3) e^{(-3) / 2}=-\frac{3}{e^{3 / 2}} \approx-0.66939 \\
f(1) & =(1) e^{1 / 2}=e^{1 / 2} \approx 1.64872 \tag{absolutemaximum}
\end{align*}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[-3,1]$.

The graph of the function below illustrates these results.

